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We present comprehensive results on the edge-mode velocities in a quantum Hall droplet with realistic
interaction and confinement at various filling fractions. We demonstrate that the charge-mode velocity scales
roughly with the valence Landau level filling fraction and the Coulomb energy in the corresponding Landau
level. At Landau level filling fraction �=5 /2, the stark difference between the bosonic charge-mode velocity
and the fermionic neutral-mode velocity can manifest itself in the thermal smearing of the non-Abelian
quasiparticle interference. We estimate the dependence of the coherence temperature on the confining potential
strength, which may be tunable experimentally to enhance the non-Abelian state.
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I. INTRODUCTION

Fractional quantum Hall �FQH� states are incompressible
quantum liquids that support fractionalized quasiparticles
and gapless edge excitations.1 The simplest edge theory for
the Laughlin states contains a single branch of charge mode,
which is described by chiral bosons.2 The velocity of the
charged bosons vc, which enters the effective theory through
gauge-fixing condition, depends on electron-electron interac-
tion and edge confinement in general and is, therefore, not a
universal quantity. Recent development of quantum Hall
interferometers3,4 also allows experimental determination of
vc from current oscillations in the devices.

Apart from the charge mode, which seems to dominate
the edge tunneling measurement,5 neutral edge modes may
arise in the hierachical states6–8 or through edge
reconstruction.9–13 The velocities of the neutral modes vn,
which no experiments have observed, are conceivably
smaller than vc.

14,15 At Landau level �LL� filling fraction
�=5 /2,16–18 a neutral Majorana fermion mode exists in the
Moore-Read phase. In the non-Abelian FQH state, numerical
studies19,20 found vn to be roughly 10 times smaller than vc
in a model with long-range interaction and confining poten-
tial due to neutralizing background charge. Even smaller
vn /vc has been proposed to explain tunneling conductance
measurement at �=2 /5.21

The stark difference in the edge-mode velocities in the
Moore-Read phase can lead to “Bose-Fermi separation,”20

which resembles spin-charge separation in Luttinger liquids.
When propagating along the edge, quasiparticles with charge
e /4 carrying both charged bosonic and neutral fermionic
components smear at finite temperatures. This poses a strin-
gent requirement on the observation of current oscillations
due to quasiparticle interference in a double point-contact
interferometer,22–26 whose contact distance should not ex-
ceed the quasiparticle dephasing length.27 On the other hand,
the Abelian charge e /2 quasiparticles carrying the bosonic
component only �and thus not affected by the slow fermionic
mode� smear significantly less and may dominate the current

oscillations at higher temperatures when charge e /4 quasi-
particle transport is incoherent,20 even though the tunneling
amplitude of the charge e /2 quasiparticles is much smaller
than that of the charge e /4 quasiparticles.28,29

Recently, experimentalists observed30 conductance oscil-
lations consistent with the interference of both e /4 and e /2
quasiparticles in a double point contact interferometer at
�=5 /2, and the dominance of e /2 periods at higher tempera-
tures when the conductance oscillations are still visible. Fur-
ther observation of the alternative e /4 and e /2 oscillations31

is now under examinations29 on its potential origin in the
odd-even effect25,26 due to non-Abelian statistics, mingled
with the bulk-edge coupling effect.32–34 The interpretation of
the experimental findings as non-Abelian interference29 �as
opposed to, e.g., the charging effect�35–37 relies crucially on
the estimate of edge-mode velocities from numerical
studies,20 which predicted significant difference in coherent
lengths or coherent temperatures for charge e /4 and e /2 qua-
siparticles.

In this paper, we report results on studies of edge-mode
velocities in a realistic microscopic model for both Abelian
and non-Abelian FQH liquids, including the analysis on
finite-size effect and the effect of edge confinement. We
show that the charge-mode velocity vc is roughly propor-
tional to the valence LL filling fraction and the Coulomb
energy scale in the corresponding LL, while the neutral-
mode velocity vn in the Moore-Read phase is consistently
smaller. We further present our estimate of the coherent tem-
peratures for charge e /4 and e /2 quasiparticles in the Moore-
Read phase based on the quantitative knowledge of the two
velocities, and show that they are in quantitative agreement
with recent experiments.

The rest of the paper is organized as follows. We present
our model and discuss its relevance to an experimental setup
in Sec. II. We present our main results on edge-mode veloci-
ties in Sec. III and discuss their implication on interference
experiments in Sec. IV. We discuss the limitation of our mi-
croscopic approach and summarize the paper in Sec. V.
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II. GROUNDSTATABILITY IN A CHARGE-NEUTRAL
MODEL

We consider a microscopic model of a two-dimensional
electron gas �2DEG� in a disk geometry with long-range
Coulomb interaction among electrons in the lowest Landau
level �0LL� or the first excited Landau level �1LL�. We in-
troduce a confining potential by including neutralizing back-
ground charge distributed uniformly on a parallel disk at a
distance d from the 2DEG. The model prototypes a
modulation-doped sample, which separates charged impuri-
ties spatially from the electron layer for high charge mobility.
We use the location of the background charge to tune from
stronger confinement �smaller d� to weaker confinement
�larger d�. The microscopic Hamiltonian is

HC =
1

2�
mnl

Vmn
l cm+l

† cn
†cn+lcm + �

m

Umcm
† cm, �1�

where cm
† creates an electron in a single-particle state with

angular momentum m in the symmetric gauge. Vmn
l ’s are the

corresponding matrix elements of Coulomb interaction, and
Um’s the matrix elements of the confining potential.12,20 The
definitions of the electron operators and matrix elements are
consistent with the corresponding LL index; the common
practice is to map them into the 0LL representation using
ladder operators across LLs.38 At various �, we study the
spectrum of the model Hamiltonian numerically by exact
diagonalization using the Lanczos algorithm up to 7 elec-
trons for �=1 /5,10 electrons for �=1 /3,14 electrons for
�=5 /2, and 20 electrons for �=2 /3.

Our approach features the inclusion of a realistic confin-
ing potential due to the neutralizing background charge; it
allows us to study the energetics in the microscopic model
quantitatively and compare with the experimental observa-
tions. For example, we can identify various phases by study-
ing the total angular momentum of the ground state Mgs of
the model as d varies at a given �, as illustrated in Fig. 1. In
Fig. 1�a�, we plot the ground state energy E�M� in each total
angular momentum �M� subspace for N=12 electrons in 22
1LL orbitals, i.e., at �=5 /2. When the background charge
lies at d / lB=0.4, 0.6, and 0.8, Mgs yields 121, 126, and
136, respectively. The global ground state at d=0.6lB has the
same Mgs as that of the N=12 Moore-Read state
MMR=N�2N−3� /2=126; thus we say that the Moore-Read
state is groundstatable39 at d=0.6lB. Our calculation shows
that the 12-electron Moore-Read state is groundstatable in 22
1LL orbitals with 0.51� �d / lB��0.76, as indicated in Fig.
1�b�. We have shown that the ground state evolves continu-
ously into the Moore-Read state when the Coulomb interac-
tion changes smoothly to a three-body interaction in Ref. 20,
which also discussed the nature of the other ground states.

Our main motivation to introduce a neutralizing charge
background at a distance d away from the 2DEG is for mod-
eling experimental structures. In ultra-high-mobility GaAs
samples,40 an undoped setback, whose thickness optimizes
charge mobility, separates a thin layer of Si impurities and
the 2DEG. Therefore, it is tempting to identify d in our
model as �or to quantitatively relate it to� the thickness of the
setback layer, which can be of the order of 1000 Å,41 or

about 10 magnetic length lB for a typical magnetic field
strength ��5 T, as in Ref. 30�. However, the direct identifi-
cation is an oversimplification. In past studies, we have en-
countered at least three different scenarios in which addi-
tional edges are present in the system and spoil the
identification by changing the effective edge confining po-
tential. First, as in the �=5 /2 case,20 filled LLs introduce
integer edges, which may influence the confining potential of
the inner edge for the partially filled LL. Second, in a non-
chiral case like �=2 /3,8 two counterpropagating edges can
move relatively to each other to adjust their shares of the
confining potential, leading to a series of ground states with
different Mgs, as illustrated in Fig. 1�c�. Nevertheless, they
belong to the same phase.8 Finally, even in the case of a
single chiral edge, a fractional quantum Hall droplet may
undergo one or more edge-reconstruction transitions to intro-
duce counterpropagating edges for d�1.5lB �as illustrated in
Fig. 1�d��, beyond which the microscopic calculation suffers
from size limitation.12 However, even with the complica-
tions, we believe that the introduction of d is experimentally
relevant in the following two ways. First, the range of d in
which a specific phase is groundstatable often indicates the
stability of the phase, as the comparison of Figs. 1�b� and
1�d� clearly demonstrates. Second, the relative value of d
measures the relative strength of the confining potential, thus
allowing qualitative and, sometimes, quantitative predictions
from the model calculation.
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FIG. 1. �Color online� �a� Ground state energy E�M� in each
total angular momentum M subspace for N=12 electrons with 22
orbitals in the 1LL ��=5 /2�. The neutralizing background charge is
at a distance d / lB=0.4, 0.6, and 0.8 away from the 2DEG. The total
angular momentum of the global ground state Mgs �indicated by
arrows� increases from 121, 126, to 136, respectively. The global
ground state at d=0.6lB has the same total angular momentum
MMR=N�2N−3� /2=126 as the corresponding N=12 Moore-Read
state. We have shifted the curves vertically for d=0.4lB and 0.8lB

for clarity. �b� Mgs as a function of d at �=5 /2. The solid dots
indicate the plateau at which the Moore-Read state is groundstat-
able. �c� Mgs as a function of d for 20 electrons in 30 orbitals
��=2 /3�. We can understand the three plateaus of Mgs as �=1 /3
Laughlin droplets of 5–7 holes embedded in a �=1 electron droplet.
Note that they are in the same phase, but the corresponding dis-
tances between two counterpropagating edges are different �Ref. 8�.
�d� Mgs as a function of d for 6 electrons in 18 orbitals ��=1 /3�.
The solid dots indicate the plateau at which the Laughlin state is
groundstatable. Beyond d�1.5lB, the system undergoes an edge-
reconstruction transition �Refs. 10 and 12�.
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III. EDGE-MODE VELOCITIES

At �=1 /3, the edge excitations arise from a single branch
of bosonic charge mode as illustrated in Fig. 2�a� for
N=8 electrons and d=0.6lB. Ref. 12, in the context of edge
reconstruction, has explained in detail the method for the
identification of the edge excitations among all excitations.
In a finite system, we can then define vc through �i� the
excitation energy �E��M =1� of the smallest momentum
mode with edge momentum k=�M /R=1 /R, i.e.,
vc

�= �R /���E��M =1�, where R=�2N /� is the radius of the
droplet, or �ii� the slope at k=0 of the dispersion curve
�see Fig. 2�b�� fitted to the edge-mode energies, i.e.,
vc

d= �R /���dE /dM�. As shown in Fig. 2�c�, both definitions
point to �0.3e2 /�� in the thermodynamic limit and are
therefore suitable. The definition vc

d is less robust due to the
nonlinear dispersion at small k in finite systems; thus, we
will use the definition vc

� in later analyses. In general, vc
depends on the strength of the confining potential, which is
determined by charge neutrality and is meaningful only
when the Laughlin variational wave function is
groundstatable,39 i.e., the Coulomb ground state has the
same angular momentum as the Laughlin state. For �=1 /3,
neutrality limits vc from above, while groundstatability from
below,10,12 allowing vc to vary between 0.21–0.40e2 /�� �see
Fig. 3�, or 3.5–6.7�106 cm /s in GaAs systems �with di-
electric constant ��13�. A similar analysis for �=1 /5 �with
less robust finite-size analysis due to computational
limitation� reveals vc to be 0.20–0.26e2 /��, or
3.4–4.4�106 cm /s for GaAs.

We now turn to �=5 /2, or a valence LL filling
��=�− ���=1 /2, after subtracting the filled 0LL. The even-
denominator quantum Hall state is widely expected to be the
Moore-Read Pfaffian state,16 described by the SU�2�2 topo-
logical quantum field theory, or its particle-hole conjugate,
the anti-Pfaffian state.17,18 In numerical studies, the Pfaffian
state can be stabilized on the disk geometry,19,20 whose edge

contains both neutral Majorana fermions and charged chiral
bosons. The heavy mixture of the bulk and edge excitations
complicates the extraction of vc,n.19 Therefore, we mix the
three-body interaction with the Coulomb interaction to sepa-
rate the edge and bulk excitations in energy and extrapolate
the calculated velocities to the pure Coulomb case.20 Based
on a similar finite-size scaling in systems of 6–14 electrons
as described above, we obtain 0.36e2 /���vc�0.38e2 /��,
or 6�106�vc�6.4�106 cm /s for GaAs, which is about
20% larger than the estimate based on a 12-electron
system.20

We summarize the range of vc in Fig. 3. For �=2 /3, we
include both the left- and right-going-mode velocities,42,8

arising from the coupling of the edge modes1,7 of the inner
Laughlin �=1 /3 hole droplet and the outer �=1 droplet.6,43

Since the Coulomb energy is the only energy scale, dimen-
sional analysis implies

vc � ��e2/�� = ���	/��c , �2�

where c is the speed of light in vacuum and 	�1 /137 the
fine-structure constant. Our numerical results, including the
larger velocity for �=2 /3 �which we assume to be the
charge-mode velocity�, agrees well with Eq. �2�. At �=5 /2,
we can attribute the deviation to the reduction in the Cou-
lomb energy scale in the 1LL, due to the change in the LL
structure factor. On the other hand, the counterpropagating
�presumably neutral� mode at �=2 /3 has a velocity closer to
the value for �=1 /3; in finite systems, we cannot resolve
whether the interedge Coulomb coupling �divergent in the
long wavelength limit� can lower the value �as being decou-
pled from charge, the neutral mode has a conceivably small
velocity�. Recently, trial wave functions are under consider-
ation for such FQH states with negative flux in the composite
fermion approach.44 It is worth mentioning that the results of
vc are consistent with the recent experimental determinations
of vc to be 4�106 cm /s for �=1 /3 3 or to saturate at
1.5�107 cm /s in the integer regime,4 further justifying the

0

0.1

0.2

(a)

0

0.03

0.06

0 1 2 3 4
∆M

(b)

∆E
(e

2 /ε
l B

)

0

0.03

0.06

0 1 2 3 4
∆M

(b)

∆E
(e

2 /ε
l B

)

0.1

0.2

0.3

0.4

0 0.1 0.2

2

3

4

5

6

v c
(e

2 /ε
− h)

v c
(1

06
cm

/s
)

1/N

(c)

0.1

0.2

0.3

0.4

0 0.1 0.2

2

3

4

5

6

v c
(e

2 /ε
− h)

v c
(1

06
cm

/s
)

1/N

(c)

vd
c

0.1

0.2

0.3

0.4

0 0.1 0.2

2

3

4

5

6

v c
(e

2 /ε
− h)

v c
(1

06
cm

/s
)

1/N

(c)

vd
c

v∆
c

FIG. 2. �Color online� Edge-mode velocity analysis for �=1 /3.
�a� Low-energy excitations in a N=8 system with background
charge at d=0.6lB, with edge excitations marked by solid bars. �b�
Energies of single chiral boson excitations, which are the ground
states in individual momentum spaces �marked in red in �a��. �c�
Chiral boson �or charge mode� velocity vc defined either by the
slope of the best quadratic fit in �b� at the origin �vc

d� or by the
ground-state energy difference at �M =0 and 1 �vc

�� for systems of
5–10 electrons. The finite-size scaling of vc

� shows a weaker non-
linear effect, although the two definitions tend to give the same
result in the thermodynamic limit.
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statable range of the confining potential strength �or d�. The candle
data for �=2 /3 are based on 20 electrons in 30 orbitals for various
confining potential strength, while the error bars reflect our estimate
of the uncertainty due to finite-size effects. The solid line is the
dimensional analysis result vc=��e2 /��.
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validity of our microscopic model calculation. They are also
quantitatively consistent with earlier time-resolved transport
measurements.45–47

On the other hand, theoretical proposals agree on a
smaller value for vn, with electrostatic,14 topological,15 and
dynamic origins.48 But the edge magnetoplasmon experiment
in the time domain,45 e.g., showed no hint of the existence of
a counterpropagating edge mode at �=2 /3, although
theories1,6,7,43 and the numerical study on a realistic model8

suggested its existence. In the chiral case at �=5 /2, we
found vn to be one order of magnitude smaller than vc in a
system with N=12 electrons at d=0.6lB.20 Here, we extend
the study on vn by exploring the parameter space of d and N,
as long as the Moore-Read phase is the stable ground state,
or groundstatable, with Coulomb interaction among elec-
trons. As explained in earlier studies,20 we first mix three-
body interaction with Coulomb interaction to allow a clear
separation of bulk modes and edge modes. In this case, the
lowest edge excitation with �M =2 has an excitation energy
�En being the sum of the two neutral excitation energies at
kR=1 /2 and 3 /2 due to the antiperiodic boundary condition
in the absence of bulk quasiparticles. Therefore, we expect
vn= �R /2���En��M =2�. Extrapolating data to the
pure Coulomb case and to the thermodynamic limit, we
obtain the range of vn to be 0.045–0.065e2 /��, or
0.75–1.1�106 cm /s for GaAs. The finite-size scaling
analysis reveals that the value of vn in a 12-electron system
obtained earlier20 is about 40% smaller than its thermody-
namic value, though we still have a large ratio vc /vn�6–8.

Within the groundstatable range of the parameter space,
the velocities decrease as d increases, i.e., as the confining
potential strength becomes weaker. We can fit the trend by a
linear dependence on d. At �=5 /2, we find that the velocities
in the thermodynamic limit are

vc = 0.435 − 0.106d/lB �3�

vn = 0.123 − 0.120d/lB, �4�

in unit of e2 /��.

IV. THERMAL DECOHERENCE IN INTERFERENCE
EXPERIMENTS

The small vn, as opposed to the larger vc, dominates the
thermal smearing of the non-Abelian e /4 quasiparticles in
edge transport. In an interference experiment, finite tempera-
ture T introduces an additional energy scale to compete with
the traverse frequency for quasiparticles �or edge waves�
propagating from one point contact to another between mul-
tiple reflections within the interferometer. Therefore, the
Aharonov-Bohm type oscillation will be washed out above
the coherence temperature29

T� =
1

2
LkB
	gc

vc
+

gn

vn

−1

, �5�

where L is the distance along the interference path between
the two point contacts. For the Moore-Read Pfaffian �or anti-
Pfaffian� state, gc=1 /8 and gn=1 /8 �or 3/8� are the corre-

sponding scaling dimensions. Using our results for vc and vn,
we plot T� in the Moore-Read phase for charge e /4 quasi-
particles and the e /2 quasiparticles in the Ising vacuum sec-
tor �gc=1 /2 and gn=0� as a function of d in Fig. 4, assuming
a point contact distance of L=1 �m. Here, we use the ex-
trapolated value of vc and vn in the thermodynamic limit for
the Coulomb interaction �Eqs. �3� and �4��. Therefore, in an
interference experiment, we expect that with increasing T the
conductance oscillations due to the interference of e /4 qua-
siparticles �thus signatures of non-Abelian statistics� will dis-
appear first at a lower temperature, which depends strongly
on the details of the confinement potential. On the other
hand, the oscillations due to e /2 quasiparticles will persist up
to about 150 mK, which is less sensitive to the confinement.
This picture and the corresponding temperature ranges agree
with the Willett experiment30 quantitatively.

For the solid range of the curves in Fig. 4
�or 0.47�d / lB�0.62�, we can justify the groundstatability
of the Moore-Read state in a 12-electron system in 26 orbit-
als with the pure Coulomb interaction. This range is sensitive
to the system size and the number of orbitals; e.g., we found
it to be 0.51�d / lB�0.76 for the 12-electron system in 22
orbitals. This indicates that the stability of the Moore-Read
state is sensitive to the sharpness of the edge confinement. In
general, we find the groundstatable range becomes wider in
larger systems; therefore, it is tempting to extrapolate the
trend in velocities �Eqs. �3� and �4�� to dc� lB, where vn
vanishes. However, a potentially competing stripe phase may
arise below dc.

20 Accordingly, we extrapolate the coherence
temperatures further in weaker confinement, as illustrated by
the broken lines in Fig. 4.

One can probe the sensitive dependence of T� on d for
e /4 quasiparticles by controlling lB via tuning electron den-
sity and magnetic field simultaneously or by applying an
external confining potential. This would indirectly support
our conclusion that it is the smallness of vn that controls the
coherence length or temperature. Direct evidence may come
from the transport measurements of a long tunneling
contact49 or from the momentum-resolved tunneling
measurements,50,51 in which the slower neutral mode is ac-
cessible.
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FIG. 4. �Color online� Coherence temperature T� �based on the
estimate of vc and vn� as a function of d for both e /4 �upper line�
and e /2 �lower line� quasiparticles in the Moore-Read state in an
L=1 �m sample. The broken lines at d�0.62lB are obtained by the
extrapolation of the velocities, as the Moore-Read state is no longer
groundstatable in a system of 12 electrons in 26 orbitals. A stripe
phase may emerge below d= lB �Ref. 20�.
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V. DISCUSSION AND CONCLUSION

The narrow range of both charge-mode and neutral-mode
velocities, Abelian or not, appears to be surprising, as the
velocities are sensitive to confining potential and electron-
electron interaction. This is, however, understandable. De-
spite the stability in the bulk, edges of fractional quantum
Hall states are fragile.10,12 For �=5 /2, multiple competing
phases also exist in the bulk.17,18,20,52,53 Therefore, a signifi-
cant change in the edge-mode velocities must follow from
significant changes in parameters, which normally lead to
various instabilities. For example, when background confin-
ing potential becomes weaker, edge reconstruction10–12 takes
place, changing the ground state and creating additional neu-
tral modes with smaller velocities. Consequently, vc in-
creases in the reconstructed case �see Fig. 10 in Ref. 12�. It
is, however, possible that vn can become smaller in the
weaker confining potential that leads to edge
reconstruction.21

In reality, the finite spread of the electron wave function
in the perpendicular direction tends to soften the Coulomb
interaction. While we focus strictly on zero layer thickness in
the presentation, the velocity ranges cannot change too much
because the finite thickness also changes the confining po-
tential arising from charge neutrality, so the groundstatability
windows shift accordingly.12 Perhaps the most uncertain fac-

tor is the filled lowest Landau level neglected completely in
the calculation for �=5 /2. However, we expect that the en-
forcement of the criterion of groundstatability is likely to
protect the velocities from deviating significantly.

In conclusion, we have calculated the ranges of edge-
mode velocities in various FQH states using a microscopic
model with long-range interaction and tunable confining po-
tential. In the Moore-Read phase for �=5 /2, our calculations
conclude that the charge-mode velocity is consistently much
greater than the neutral-mode velocity, leading to the Bose-
Fermi separation and the dominance of e /2 and e /4 oscilla-
tions at different temperature ranges in a quantum Hall
interferometer,20 which is consistent with the recent interfer-
ometry experiments.30,31
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